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Abstract 

The equilibrium hygroscopic behavior of an aqueous solution drop is investigated 

using the Köhler model to relate the radius ratio ξ ≡ r/rdry, where rdry is the volume-

equivalent dry radius, and the fractional relative humidity h. The Köhler equation is 

derived and results obtained from it are presented for three situations: when the effect of 

surface tension can be neglected, for h = 1, and for cloud-drop activation. The exact 

solution to this equation is presented, as is an accurate approximate solution for h < 1 that 

yields insight into the dependences of the equilibrium radius on relative humidity, surface 

tension, and dry radius. The approximations made in the derivation of the Köhler 

equation are examined, errors in quantities obtained from this equation are quantified, 

and the so-called Debye approximation is introduced which allows accurate 

parameterization of these errors as a function of rdry. Errors in the radius ratio at 

activation obtained from the Köhler equation are up to 20% for ammonium sulfate 

solution drops of the size that typically form cloud drops. Attempts to extend the Köhler 

model to higher concentrations are examined, and it is seen that the primary cause of 

inaccuracy in the model is the assumption that the practical osmotic coefficient is unity. 

Based on this analysis, a simple two-parameter expression is presented for the 

equilibrium radius ratio as a function of h and rdry that is accurate over a wide range of 

rdry and for h up to and including unity. 
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Nomenclature 
 
a   parameter in expression for radius ratio 
aw   water activity 
Aφ   constant, ≈0.392 mol1/2 kg-1/2 at 25ºC 
b   parameter in expression for radius ratio 
B   parameter characterizing hygroscopicity 
c   parameter that depends on solute, ≡ [ν(Mw/Ms)(ρdry/ρw)]1/3 
c1   constant 
C1, C2, C3, C4  constants in expression of Gerber [1985] 
d   parameter that depends upon solute, ≡ |z+z-|(I/m)1/2 
Fh   factor for fractional relative humidity term, ≡ -lnh/(1 - h) 
FK   factor for Kelvin term, ≡ ξσ/ξσ,0 
FR   factor for Raoult term, ≡ φ/[1 - (ρdryVφ/Ms)/ξ3] 
Fξ   factor comprising FR, ≡ 1/[1 - (ρdryVφ/Ms)/ξ3] 
Fφ   factor comprising FR, ≡ φ 
h   fractional relative humidity, ≡ RH/100% 
hact   fractional relative humidity at activation 
I   ionic strength of solution, mol kg-1 
K   parameter that depends upon solute 
m   molality, mol kg-1 
mdry   dry mass of (anhydrous) solute 
Ms   molar mass of solute 
Mw   molar mass of water, ≈ 0.018 kg mol-1 
n   constant 
r   drop radius 
r    characteristic length for radius at activation, ≡ rσ,0/(3c3) 
r̂    characteristic length for supersaturation at activation, ≡ 22/3rσ,0/(3c) 
r1   radius at h = 1 

1r  characteristic length for fractional error in r1 obtained from Köhler 

model 
ract   radius at activation 

actr  characteristic length for fractional error in ract obtained from 

Köhler model 
rdry   volume-equivalent dry radius, ≡ [3mdry/(4πρdry)]

1/3 
rdry,c   critical value of rdry for activation 
rσ   characteristic length scale for Kelvin effect, ≡ 2 wv σ/(RT) 

rσ,0   value of rσ evaluated for pure water, ≈ 1.1 nm 
R   gas constant, ≈ 8.3 J K-1 mol-1 
RH   relative humidity, % 
s   supersaturation, ≡ h - 1 
s    characteristic supersaturation for fractional error in rdry,c 
sact   supersaturation at activation 
T   absolute temperature, K 
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wv    partial molal volume of water in solution (=Mw/ρw for pure water) 

Vφ   apparent molal volume of solute in solution 
z   scaled radius ratio in Köhler equation for h < 1, ≡ [(r/rdry)/c](1-h)1/3 
z0, z1   terms in expression for z in Köhler equation for h < 1 
z+, z- magnitudes of charges of the positive and negative ions, 

respectively, into which electrolyte dissociates in solution 
 
α   function of h in parameterization of radius ratio 
β   function of h in parameterization of radius ratio 
∆s   fractional error in supersaturation calculated by Köhler model 
∆sact   value of ∆s at activation 
∆ξ   fractional error in radius ratio calculated by Köhler model 
∆ξ1   value of ∆ξ at h = 1 
∆ξact   value of ∆ξ at activation 
ε scaled Kelvin factor in Köhler equation for h < 1, 

≡ [(rσ,0/rdry)/c]/(1-h)2/3 
κ   hygrocopicity parameter of Petters and Kreidenweis [2007] 
ν   number of ions into which a molecule of solute dissociates 
ν+, ν- number of positive and negative ions, respectively, into which a 

molecule of solute dissociates 
ξ   radius ratio relative to volume-equivalent dry radius, ≡ r/rdry 
ξ1   radius ratio at h = 1 
ξact   radius ratio at activation 
ξσ   ratio of characteristic length scale for Kelvin effect to rdry, ≡ rσ/rdry 
ξσ,0   value of ξσ for pure water 
σ   surface tension of solution-air interface 
ρ   density of solution 
ρdry   density of (anhydrous) solute 
ρw   density of pure water, ≈ 1.0·103 kg m-3 
φ   practical osmotic coefficient 
φ    constant value of φ assumed in expression for radius ratio 

φ1   value of φ at h = 1 
φact   value of φ at activation 
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1. Introduction 

 

Many atmospheric aerosol components of interest are hygroscopic, meaning that a 

solution drop composed of one of these substances readily takes up water with increasing 

fractional relative humidity h (≡RH/100%). Consequently, the equilibrium radius r of 

such a drop exhibits a strong dependence on h. As r is an intrinsic property of an aerosol 

particle, controlling its dynamics, light-scattering, dry deposition, and the like, 

knowledge of this dependence is thus necessary to understand and parameterize many 

aerosol processes, both in the atmosphere and in the laboratory. 

The radius of an aqueous solution drop containing a specified mass of given 

solute is an unambiguous measure of the solute concentration, and at a given temperature 

uniquely determines important properties such as water activity, index of refraction, 

density, and surface tension. This concentration can thus be parameterized by the 

equilibrium radius ratio ξ ≡ r/rdry, where the volume-equivalent dry radius rdry is defined 

in terms of the mass of solute in the drop mdry and the bulk dry density of the (anhydrous) 

solute ρdry by rdry = [3mdry/(4πρdry)]
1/3. This volume-equivalent dry radius is not 

necessarily equal to the physical radius of a dried particle, or to a measured quantity such 

as the mobility radius (because of nonsphericity of the particle, the presence of residual 

water either within the particle or on its surface, or the presence of voids which would 

result in the density being different from that of the bulk solute); nevertheless, rdry is a 

physically meaningful measure of the size of such a particle, and together with 

specification of ρdry provides an unambiguous measure of the solute mass [Lewis, 2006]. 
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When exposed to a given relative humidity, a hygroscopic aerosol particle will 

exchange water substance, thus changing its radius (and radius ratio), until the vapor 

pressure of water adjacent to the drop is in equilibrium with this relative humidity. At a 

given temperature, this equilibrium vapor pressure, and thus the equilibrium radius ratio 

ξ, is controlled by two factors: vapor-pressure lowering due to the presence of the solute, 

the Raoult effect [Raoult, 1887], and the increase in equilibrium vapor pressure from that 

of the bulk solution caused by the curvature of the drop, the Kelvin effect [Thomson, 

1871]. 

The Raoult effect reduces the water activity of the solution aw from that of pure 

water (unity) by an amount that increases with increasing solute concentration. The 

dependence of aw on solute concentration has been measured for many substances using 

bulk solutions that are undersaturated with respect to the solute, and using solution drops 

supersaturated with respect to the solute that are suspended in an electrodynamic balance 

or are in a hygroscopic tandem differential mobility analyzer. For dilute solutions the 

vapor-pressure lowering is nearly directly proportional to the concentration (Raoult's 

Law), although for higher concentrations this relationship becomes increasingly less 

accurate. 

The Kelvin effect results in an increase in the equilibrium vapor pressure of water 

above an aqueous solution drop by the factor exp{2 wv σ/(RTr)}, where wv  is the partial 

molal volume of water in the solution, σ the surface tension of the solution-air interface, 

R the gas constant, and T the absolute temperature [Tang, 1976]. A characteristic length 

scale for the Kelvin effect can thus be defined [Lewis, 2006] by rσ ≡ 2 wv σ/(RT), allowing 

the Kelvin effect to be parameterized in terms of the ratio of ξσ ≡ rσ/rdry and ξ. The 
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quantities wv  and σ, and thus rσ, depend on the solute and its concentration, and for most 

inorganic salts of atmospheric interest rσ is an increasing function of solute concentration 

and thus a decreasing function of aw, or of h for a given rdry (although for organic solutes 

this might not be so). The quantity rσ,0 is defined as the value of rσ calculated with wv  

and σ taken as their values at infinite dilution (that is, of pure water), and the quantity ξσ,0 

is defined similarly as ξσ,0 ≡ rσ,0/rdry. Both rσ and rσ,0 depend weakly on temperature, but 

over a wide range of temperatures rσ,0 is approximately equal to 1.1 nm, typically varying 

by less than 10% from this value between 0 and 25ºC. 

The relation between the fractional relative humidity h in equilibrium with an 

aqueous solution drop with radius ratio ξ and corresponding water activity aw, which 

incorporates both the Raoult effect and the Kelvin effect, is given by  

 ( ) ( )
w exph a

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

σξ ξ
ξ

ξ
, (1) 

where the dependences of both aw and ξσ on concentration are explicitly written as 

dependences on ξ. This relation, for a given rdry, is essentially a transformation between h 

and aw. Contours of constant h as a function of aw and rdry, and contours of constant aw as 

a function of h and rdry, are shown in Fig. 1 for solution drops of ammonium sulfate and 

sodium chloride (as surface tension measurements have not been reported for solutions 

that are supersaturated with respect to the solute, corresponding to water activities below 

0.80 for ammonium sulfate and 0.75 for sodium chloride, values of rσ in this range of aw 

are determined from extrapolation of a linear fit of rσ vs. aw for solutions that are 

undersaturated with respect to the solute, as described by Lewis, 2006). For large drops h 

and aw are nearly equal, but with decreasing rdry a given value of aw corresponds to larger 
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values of h because of the increasing importance of the Kelvin effect, permitting drops to 

remain in equilibrium at values of h greater than unity. 

As ξσ is determined solely by ξ and rdry for a given solute and temperature, Eq. (1) 

can be formally expressed as h = h(ξ, ξσ). However, it is often desirable to determine ξ 

for a given value of h, as the relative humidity is typically the controlling variable. Thus 

it is necessary to invert the above relation for h to yield an expression of the form 

ξ = ξ(h, ξσ), where the dependences on surface tension and rdry (i.e., the Kelvin effect) are 

contained only in ξσ. For situations in which the Kelvin effect is negligible, such as 

sufficiently large drops at values of h not extremely close to unity (referred to as bulk 

solution drops throughout this paper), the exponential factor in Eq. (1) is very nearly 

unity and to good approximation h = aw(ξ), which can be inverted (at least in principle) to 

yield a relation of the form ξ = ξ(aw) = ξ(h). Determination of such an expression for ξ 

for situations in which the Kelvin effect is not negligible is not in general possible, but if 

this effect is slight it can be treated as a small perturbation, and an approximation that is 

accurate over a wide range of fractional relative humidities and particle sizes for several 

substances of atmospheric interest is given by  

 ( ) ( ) ( )
( )dry

dry

1
,

3 nm

h h
h r h

r

−
≈ −ξ ξ  (2) 

[Lewis, 2006]. With increasing h, however, this approximation becomes increasingly 

inaccurate, and the perturbation analysis ultimately fails. 

An alternative approach to determining ξ for given h and rdry is discussed below, 

and a simple but accurate expression is presented for ξ as a function of h and ξσ that is 

valid up to and including h = 1. Such an expression has several advantages: it allows 
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insight into the dependences of the radius, or radius ratio, on relative humidity and dry 

solute mass, provides a formulation by which hygroscopic growth data can be 

parameterized, and permits ready evaluation of the radius of a drop with given mass of a 

known solute without the need for more complicated models in which it must be 

calculated iteratively and in which the dependences on relative humidity and dry solute 

mass are not clearly identified. Thus, this expression may be useful for global climate 

models, for instance, where large spatial scales preclude the need for extreme accuracy 

and where computational expense is a consideration. 

 

2. Köhler Model 

 

A widely used model relating the fractional relative humidity h and the 

equilibrium radius ratio ξ of an aqueous solution drop containing a given mass of solute 

characterized by rdry is that proposed by Köhler [1921]. This model, which accounts for 

both the Raoult effect and the Kelvin effect, is standard textbook fare and has proven 

quite successful in explaining many of the phenomena associated with hygroscopic 

growth that occur at relative humidities near or above 100%, such as cloud drop 

activation. Additionally, it is the basis for more complicated models often purported to be 

valid over a wider range of relative humidities, and for those that include effects of 

insoluble inclusions and other substances [e.g., McKinnon, 1969; Junge and McLaren, 

1971; Hänel, 1976; Pruppacher and Klett, 1978; Chen, 1994; Shulman et al., 1996; 

Laaksonen et al., 1998; Li et al., 1998; Hori et al., 2003; Kulmala et al., 2004; Tammet 

and Kulmala, 2005]. Because of its importance and widespread application, examination 
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of this model to determine the range of conditions under which it may be expected to 

yield accurate results is warranted. Hence it is necessary to consider the approximations 

inherent in the model and the assumptions required, their satisfaction, and the 

consequences of the failure of them to be satisfied, to determine which approximation 

limits accurate extension of the model to higher concentrations, and to quantify the errors 

resulting from its application. 

In the following sections the basic Köhler model is examined and the Köhler 

equation, expressed in terms of dimensionless quantities, is derived. Results obtained 

from this model are briefly reviewed, and its accuracy in several situations is quantified. 

A theoretical explanation for the errors resulting from the model in the so-called Debye 

limit is given in Appendix A. Although the analysis presented below is applicable for any 

inorganic solute that dissociates in solution, specific examples are provided for aqueous 

solution drops of two common atmospheric constituents, ammonium sulfate and sodium 

chloride, at 25ºC. Not only are these two substances important in their own right, but 

results for them provide estimates for the magnitude of values for other substances and 

some indication of the range of values that might be expected. Although measurements of 

water activities over the entire range considered here have not been reported (for 

example, measurements have not been reported for water activities of ammonium sulfate 

solutions with molality less than 0.13 mol kg-1, corresponding to water activities greater 

than 0.995), formulations of water activity that extend to lower concentrations (i.e., 

higher water activities) based on theory and on measurements of other physical and 

chemical properties have been developed which are expected to be accurate. The values 
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used here are calculated from the formulations presented in Clegg et al. [1995] for 

ammonium sulfate solutions and Clegg et al. [1997] for sodium chloride solutions. 

 

2.1 Derivation of Köhler equation 

The water activity aw of an aqueous electrolytic solution containing a single solute 

with molality m is given by [Lewis and Randall, 1961]  

 ( )w wexpa M m= −φν , (3) 

where Mw is the molar mass of water, ν the number of ions into which it is assumed that 

each molecule of solute dissociates upon dissolution, and φ the practical osmotic 

coefficient, which depends on the solute and its concentration; departures of φ from unity 

result from nonideality and/or incomplete dissociation. The molality can be expressed in 

terms of ξ, the density of the solution ρ, and the apparent molal volume of the solute Vφ 

(which also depends on solute type and concentration), the latter quantity being defined 

as the difference, per mole of solute, between the volume of the solution and the volume 

of the water (calculated as the mass of water divided by the density of pure water ρw):  

 s

w

11 1⎡ ⎤+
= −⎢ ⎥

⎣ ⎦
φ ρ ρ

mM
V

m
, (4a) 

where Ms is the molar mass of the solute. This equation can be rearranged to yield  

 s

s s s w

1 1+
= +φρ ρ

ρ
VmM

mM M mM
; (4b) 

where the left-hand side of this equation, the ratio of the mass of the solution drop to the 

solute mass, can be also expressed as  
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3

3s
3

s drydry dry

1+
= ≡

ρ ρ ξ
ρρ

mM r
mM r

. (5) 

Equating (4b) and (5) and solving for m yields  

 

dry

s w

dry3

s

1

M
m

V

M

⎛ ⎞
⎜ ⎟
⎝ ⎠=
− φ

ρ
ρ
ρ

ξ
 (6) 

(and demonstrates that solute concentration can be parameterized by ξ). 

Substitution of Eqs. (3) and (6) into Eq. (1) and taking the logarithm of both sides 

yields  

 
3

dry3

s

ln
c

h
V

M

= −
−

σ

φ

ξ φ
ρξ

ξ
,  (7) 

where the constant c ≡ [ν(Mw/Ms)(ρdry/ρw)]1/3 is near unity for most substances of interest, 

being equal to 0.90 for ammonium sulfate (ν=3) and 1.10 for sodium chloride (ν=2), and 

intermediate to these two values for many inorganic solutes: 0.94 for ammonium 

bisulfate (ν=3), 0.93 for letovicite [(NH4)3H(SO4)2] (ν=6), 0.92 for ammonium nitrate 

(ν=2), 1.01 for ammonium chloride (ν=2), 1.01 for sodium sulfate (ν=3), 1.03 for sodium 

bisulfate (ν=3), and 0.99 for sodium nitrate (ν=2). Equation (7) is exact, so long as the 

dependences of ξσ, φ, and Vφ on solute concentration are taken into account. 

To arrive at what is typically called the Köhler equation several approximations 

are made, each based on the assumption that the solute concentration is low and thus that 

ξ is large and h is near unity. First, the quantity ln h is approximated as -(1-h). Next, the 

values of wv  and σ are taken as their values for pure water, with the result that ξσ is 
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replaced by ξσ,0 (such an approximation is expected to be accurate for inorganic solutes, 

although it might not be for surface-active substances, which even in very low 

concentrations can drastically reduce the surface tension of the solution-air interface). 

Next, the quantity ρdryVφ/Ms is omitted as being negligible compared to ξ3, the ratio of 

these quantities being the one minus the fraction of the volume of the solution occupied 

by the water, calculated as the mass of the water divided by the density of pure water (as 

the volume of the solution is not necessarily equal to the sum of the volumes of the water 

and of the solute, calculated as their masses divided by their respective densities, the ratio 

of ρdryVφ/Ms to ξ3 is not necessarily the same as the volume fraction of the solution 

occupied by the solute). Finally, φ is taken as unity, its limiting value for infinitely dilute 

solutions. This approximation, together with the assumption that ln h can be accurately 

approximated by -(1-h), implies that the decrease in the water activity due to the presence 

of the solute (i.e., the vapor-pressure lowering) is equal to number of moles of ions per 

mole of water. 

With these approximations Eq. (7) can be written as  

 ( )
3

0

3
1

c
h ,− − = −σξ

ξ ξ
, (8) 

often termed the Köhler equation, solution of which yields the equilibrium radius ratio ξ 

solely in terms of h and the dimensionless constants ξσ,0 and c, of which only ξσ,0 

depends on rdry and only c depends on the solute. The first term on the right hand side of 

this equation, which contains the dependence on surface tension, is denoted the Kelvin 

term and the second term the Raoult term, their ratio quantifying the importance of the 

Kelvin effect to the equilibrium relative humidity. 
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Although it is difficult to draw general conclusions on the accuracy of the Köhler 

model over a wide range of drop size, solute type, and fractional relative humidity, results 

are presented below for three situations, each of different relative importance of the 

Kelvin term to the Raoult term: when the Kelvin effect is of negligible importance (i.e., 

bulk solution drops); h = 1; and activation, which occurs when h attains the maximum 

value for which equilibration can occur. For situations in which the Kelvin effect can be 

neglected, ξ can be determined from Eq. (8) as  

 
( )1 3
1

c

h
=

−
ξ . (9) 

As h approaches unity, the Kelvin term becomes increasingly important, and for h equal 

to unity, when the Kelvin term and Raoult term are equal in magnitude, the radius ratio ξ1 

can be obtained from Eq. (8) as  

 

1 2
3

1
0

c

,

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠σ

ξ
ξ

, (10) 

and the radius r1 is given by  

 

1 23 3
dry

1
0

c r
r

r ,

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠σ

. (11) 

As h increases above unity the drop becomes supersaturated with respect to water vapor 

(with supersaturation s≡h-1), and ξ increases until at a value of h, denoted hact, the drop is 

said to activate; for larger values of h equilibrium is not possible, and the drop continues 

to grow without bound. At activation the magnitude of the Kelvin term is three times that 

of the Raoult term, and according to Eq. (8) the radius ratio ξact is given by  
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1 2
3

1 2
act 1

0

3
3

c

,

⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠σ

ξ ξ
ξ

, (12) 

and the radius ract by  

 

1 23 3
dry 1 2

act 1
0

3
3

c r
r r

r ,

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠σ

. (13a) 

The supersaturation at activation, also known as the critical supersaturation, is obtained 

from Eq. (8) as  

 

3 23 2
0 0 ,0

act
dry act

2
2 2

3 3 3

r r
s

c cr r
, ,⎛ ⎞⎛ ⎞

= ≡ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

σ σ σξ
. (14a) 

Thus, on a log-log plot, graphs of r1 vs. rdry and ract vs. rdry are straight lines with slope 

3/2, and a graph of sact vs. rdry is a straight line with slope -3/2; these are shown for 

solution drops of ammonium sulfate and sodium chloride in Figs. 2, 3, and 4, 

respectively. 

Equations (13a) and (14a) can also be written in a form that readily allows 

calculation as  

 

1 2
dry

act dry

r
r r

r

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (13b) 

where r  = rσ,0/(3c3) is approximately equal to 0.51 nm for ammonium sulfate and 

0.27 nm for sodium chloride, and  

 

3 2

act
dry

r̂
s

r

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

, (14b) 
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where r̂  = 22/3rσ,0/(3c) is approximately equal to 0.65 nm for ammonium sulfate and 

0.53 nm for sodium chloride. Additionally, Eq. (14a) can be inverted to yield rdry,c, the 

value of the dry radius of the smallest particle that will activate at given supersaturation:  

 
2 3

,0
dry,c 2 3

2 0.58nm

3

r
r

c s c s

⎛ ⎞= ≈⎜ ⎟ ⋅⎝ ⎠
σ . (15) 

Thus, for example, at (0.1, 0.5, 1.0)% supersaturation, for which s = (0.001, 0.005, 0.01), 

activation will occur for ammonium sulfate drops with rdry > (65, 22, 14) nm and sodium 

chloride drops with rdry > (53, 18, 11) nm. 

 

2.2 Solution and approximate solutions to the Köhler equation for h < 1 

For h less than unity, Eq. (8) can be expressed in an alternative form though 

introduction of the scaled radius ratio z = (ξ/c)(1-h)1/3 and the scaled Kelvin factor 

ε = (ξσ,0/c)/(1-h)2/3 as  

 3 2 1 0z z+ − =ε , (16) 

where the second term in the equation is the Kelvin term and the third term is the Raoult 

term (similar analysis could also be applied to the situation h≥1, thus including situations 

pertinent to cloud drop activation). The quantity ε, which is an increasing function of h 

and increases without bound as h approaches unity from below, characterizes the 

importance of the Kelvin effect; for ε << 1 this effect is unimportant, but as ε approaches 

unity this effect becomes increasingly important. 

Although not apparent in Eq. (8), for which ξ depends upon the three quantities h, 

ξσ,0 and c, the solution to Eq. (16) depends only upon ε. As this equation is a cubic, it can 

be solved analytically for z(ε), from which ξ can be obtained as an explicit function of h 
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for given rdry. For any positive ε greater than its minimum value ξσ,0/c (equivalently, for 

any h such that 0<h<1) there is one real positive solution given by  

 

1 3 1 31 2 1 23 3 3 31 1 1 1

3 2 27 4 27 2 27 4 27
z

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ⎢ ⎥ ⎢ ⎥= + − + − + − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

ε ε ε ε ε
, (17) 

shown in Fig. 5. However, this expression, although exact, provides little insight into the 

functional dependence of z upon ε (or of ξ upon h and rdry), and approximate solutions 

prove easier to use and can be extended to situations in which the basic assumption made 

in the derivation of the Köhler equation (i.e., low solute concentration) is not satisfied. 

Solutions to Eq. (16) can readily be obtained for the limits ε << 1 (when the 

Kelvin effect is unimportant) and ε >> 1 (h very near unity). In the first limit z = 1, which 

is equivalent to Eq. (9), ξ being a power law in (1-h) with exponent -1/3, and in the 

second limit z = ε-1/2, which yields the value given by Eq. (10) for ξ1; solutions for both 

of these limits are also shown in Fig. 5. The lowest-order correction to the solution of 

Eq. (16) in the limit ε << 1 can be obtained by assuming z = z0 + εz1 + …, where z0 = 1 

and each successive term contains a higher power of ε. This procedure results in z1 = -1/3 

and thus z ≈ 1 - ε/3, or equivalently,  
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consistent with the lowest-order Kelvin correction to the radius ratio [Lewis, 2006] for a 

power law of the form given by Eq. (9) for h near unity; cf. Eq. (2). This expression for z, 

shown in Fig. 5, agrees with the exact solution to within a few percent for ε < ~0.5, but 

the agreement rapidly diminishes with further increase in ε. This procedure could be 
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continued to yield higher-order corrections, but such an attempt would be of little value 

because of the approximations that were made to obtain the Köhler equation. 

Approximate solutions can be found that apply over the entire range of positive ε 

(h<1) and that have the correct limit for large ε and the correct limit and lowest-order 

correction for small ε, but good accuracy can be obtained by simpler expressions, such as 

z = (1+εn/2)-1/n for n > 0. This expression, which yields the correct limits for both ε << 1 

and ε >> 1, can be quite accurate: for n = 2.5 it agrees with the exact solution to within 

1.5%, and for n = 3 (shown in Fig. 5) to within 6%, for all positive ε. The approximate 

solution for n = 3, z = (1+ε3/2)-1/3, is used here because of its accuracy and simplicity, and 

because it can readily be extended to situations for which the basic assumption used to 

derive the Köhler equation is not satisfied, as is done below. Although this expression 

does not provide the correct functional dependence on rdry of the lowest-order correction 

given by Eq. (18), this is not of great consequence, as this correction is relatively 

unimportant in situations for which it is sufficiently small that higher-order corrections 

are not required. In terms of the radius ratio this expression can be written as  
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where ξ1 is the value of the radius ratio at h = 1 given by Eq. (10) for the Köhler model. 

The expression for ξ given by Eq. (19) satisfies the equation  
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which differs from Eq. (8) only by the factor [ξ/ξ1] in the Kelvin term. This factor, equal 

to zε1/2, is less than unity for h < 1, but as the Kelvin term is important only when ξ is 

nearly equal to ξ1 (when the factor is nearly equal to unity), the consequences of the 

approximation that this factor is unity are slight (Fig. 5). In essence, Eq. (19) follows 

from the assumption that the Kelvin term evaluated at ξ1 applies to all situations. As 

ξ < ξ1 for h < 1, evaluation of the surface tension term at ξ1 results in an underestimation 

of the Kelvin correction and thus an overestimation of the radius (and radius ratio) in this 

range of relative humidity (and an underestimation for h>1). The result of this assumption 

is that the expression for ξ in terms of h is the same as that given by Eq. (9) for which the 

Kelvin effect is neglected, but with h decreased by ξσ,0/ξ1, which is equal to the Kelvin 

correction at h=1; for c = 1, this decrease is approximately equal to (0.04, 0.01, 0.003, 

0.001) for rdry=(10, 25, 50, 100) nm. A graph of ξ vs. h according to Eq. (19) is obtained 

from that for which the Kelvin correction is neglected by shifting the curve to the right by 

a constant amount ξσ,0/ξ1; as the graph of ξ vs. h is fairly flat for h appreciably less than 

unity (when the Kelvin effect can be neglected), such a horizontal shift, even though 

much greater than that due to the Kelvin effect at these values of h, results in very little 

error. 

 

2.3 Critical examination of the Köhler equation 

Quantification of the approximations made in the derivation of the Köhler 

equation, Eq. (8), from the exact expression, Eq. (7), allows determination of the range of 

conditions for which the Köhler equation can be expected to yield accurate results and 

identification of which approximation limits extension of the model to more concentrated 
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solutions and to values of h farther from unity. This process is achieved by rewriting 

Eq. (7) as  
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where the factor in brackets on the left-hand side of the equation is denoted Fh, the factor 

in brackets in the Kelvin term is denoted FK, and that in the Raoult term FR, which can be 

written as the product of two factors, Fφ ≡ φ and  
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Although Fh depends on h, the other factors depend only on solute concentration (for 

given solute and temperature), which can be parameterized in terms of the water activity 

aw. Equation (21) is exact; the Köhler equation follows from the assumption that each of 

the factors Fh, FK, and FR is equal to unity. However, it is not the individual factors Fh, 

FK, and FR that determine the accuracy of results obtained using the Köhler model, but 

the differences of the ratios FR/Fh and FK/Fh from unity, where in computing these ratios 

for a given solute the value of aw corresponding to a given h, which depends on the value 

of rdry according to Eq. (1), must be used. Of course the relative importance of the terms 

themselves must be considered; for instance, in situations for which the Kelvin effect is 

negligible the factor FK, and thus the ratio FK/Fh, has virtually no effect on the 

equilibrium radius ratio. 

These factors are displayed in Fig. 6 for solution drops of ammonium sulfate and 

sodium chloride (values of FK≡rσ/rσ,0 in the range of aw corresponding to solutions that 

are supersaturated with respect to the solute are determined as for Fig. 1). Each of the 
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several factors is equal to unity for aw (or h, in the case of Fh) equal to unity, but whereas 

with decreasing aw (or h) both FK and Fh initially slowly increase (and continue to 

increase monotonically), FR initially decreases extremely rapidly (this behavior typically 

holds for most inorganic solutes, although for organic solutes the surface tension, and 

thus FK, might initially decrease rapidly with decreasing aw). As Fξ increases 

monotonically with decreasing aw, the initial decrease in FR is due to Fφ (i.e., φ). This 

decrease results from the electrolytic nature of the solution [Debye and Hückel, 1923; 

Debye, 1924] and is quite rapid: as aw decreases from unity to 0.995 (corresponding to 

molality 0.12 mol kg-1 for ammonium sulfate solutions and 0.15 mol kg-1 for sodium 

chloride solutions), φ decreases from unity to 0.77 and 0.93, respectively, for these 

substances. With continued decrease in aw, φ continues to decrease for both substances 

until reaching a minimum near 0.62 at aw ≈ 0.94 for ammonium sulfate solutions and near 

0.92 at aw ≈ 0.99 for sodium chloride solutions, although with further decrease in aw the 

behavior of φ differs between these two substances: at aw = 0.80, φ is near 0.70 for 

ammonium sulfate solutions and near 1.21 for sodium chloride solutions. The 

dependence of φ on solute concentration thus depends strongly on the solute. 

Numerous formulations for this dependence have been presented—that of Pitzer 

[1973] probably being the best known—but although based in theory these are to large 

extent empirical, typically containing several terms in powers of molality or some other 

measure of concentration. The extremely rapid initial decrease in φ from unity and further 

nonuniform behavior with increasing concentration precludes realization of a simple 

parameterization for this quantity, complicating attempts to find a parameterization for ξ 

as a function of h and rdry that is accurate over a wide range of h up to very near unity. 
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The assumption that the practical osmotic coefficient φ is equal to unity (i.e., 

Fφ=1) is clearly the limiting one with regard to the accuracy of the Köhler model (Fig. 6), 

and as this assumption is approximately satisfied only for an extremely narrow range of 

water activities near unity, it thus restricts the conditions for which this model can be 

accurately applied to extremely dilute solutions. For example, for ammonium sulfate 

solution drops with aw > 0.95 the factors FK and Fξ are greater than unity by less than 4% 

and 10%, respectively, whereas Fφ is less than unity by up to nearly 40%. For sodium 

chloride solution drops over this range of aw the corresponding factors FK and Fξ are 

greater than unity by less than 3%, whereas Fφ is less than unity by up to 8%. Thus in 

many situations inaccuracies resulting from the Köhler model can be estimated to good 

approximation as being due only to the difference of φ from unity, and the range of 

situations for which the model can yield accurate results could be extended through 

consideration of a modified Köhler equation of the form  
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1

c
h ,− − = −σξ φ

ξ ξ
, (23) 

which differs from Eq. (8) only in the factor φ in the last term. 

Other investigators have noted that the primary quantity determining the 

relationship between h and ξ for drops at high relative humidity is c3φ, which is often 

termed B and referred to as the particle composition parameter [Fitzgerald et al., 1982], 

the hygroscopicity parameter [Hudson and Da, 1996], or the hygroscopicity [Ghan et al., 

2001]; the hygroscopicity parameter κ of Petters and Kreidenweis [2007], equal to 

[c3/(νmMw)]{exp[φ(νmMw)]-1} for a single solute, is also equal to c3φ for low 

concentrations. However, none of these quantities is a constant because of the 
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dependence of φ on solute concentration (and hence on ξ), thus limiting their use in 

characterizing the hygroscopicity of a given solute (additionally, any such 

characterization is based on the assumption that ξσ is nearly independent of composition 

and can be accurately approximated by ξσ,0, but although this may be true for inorganic 

solutes, for which small concentrations do not appreciably change the surface tension, 

even small amounts of surface-active organic substances can drastically reduce the 

surface tension and thus ξσ). Because of the strong dependence of φ upon ξ, Eq. (23) is of 

limited value, as it is not easily amenable to analytic investigation and cannot be inverted 

to yield a simple expression of the form ξ = ξ(h, ξσ). However, for extremely dilute 

solutions, for which the rapid decrease in φ from unity with increasing concentration can 

be accurately parameterized in terms of ξ (the Debye limit), it is possible to obtain 

estimates for the errors in the Köhler model; these are derived in Appendix A and are 

presented below. 

 

2.4 Inaccuracies resulting from the Köhler model 

In this section the consequences of the approximation that the several F factors 

are equal to unity are examined and errors resulting from this approximation are 

quantified for the three situations considered throughout this paper: bulk solution drops, 

h = 1, and activation. The fractional error in the equilibrium radius ratio, ∆ξ/ξ, where ∆ξ 

is the radius ratio calculated according to the Köhler model minus the actual value, is 

presented, as are the fractional errors in the critical value of the supersaturation for given 

rdry, and in the critical value of the dry radius for given s, for the Debye limit obtained in 

Appendix A. 
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For bulk solution drops the equilibrium radius ratio can be obtained from Eq. (21) 

as  
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with corresponding fractional error given by  
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where FR is evaluated at aw = h. As the ratio Fh/FR varies from 0.74 to 1.51 for 

ammonium sulfate and from 0.70 to 1.09 for sodium chloride over the respective ranges 

of h for which solution drops exist, the fractional error in ξ varies from -10% to +15% for 

ammonium sulfate and from -11% to +3% for sodium chloride. Even over the range 

0.90 < h < 0.99 the fractional error in ξ exceeds 10% for ammonium sulfate solution 

drops, primarily because of the decrease of φ to near 0.7 within this range. 

For h = 1 the equilibrium radius ratio ξ1 can be obtained from Eq. (21) as  
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with fractional error given by  
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(Fig. 2), where both FR and FK are evaluated at the water activity corresponding to h = 1 

for the given rdry according to Eq. (1). As when h = 1 the water activity is near unity for 

rdry greater than ~20 nm (Fig. 1), FK is very near unity and the difference of FR from 

unity is due mainly to the practical osmotic coefficient at h = 1, φ1, shown as a function 
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of rdry in Fig. 7 for ammonium sulfate and sodium chloride solution drops. Thus for drops 

in this size range Eq. (27) can be accurately approximated as  

 1
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ξ φ

, (28) 

with the approximation becoming more accurate with increasing rdry. In the Debye limit 

this quantity (Appendix A) is given by  
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(also shown in Fig. 2), where 1r  ≈  5.0 nm for ammonium sulfate solutions and 1.0 nm 

for sodium chloride solutions. 

As activation occurs when h takes its maximum value for which equilibrium is 

possible, expressions for ξact, sact, and rdry,c, and for the fractional errors in these 

quantities, can be determined by differentiation of Eq. (21) with respect to ξ (the 

fractional error in ξact is shown in Fig. 3, and sact and its fractional error in Fig. 4). 

However, these expressions, which involve FR, FK, and their derivatives with respect to 

ξ, are cumbersome and must be evaluated at the water activity corresponding to 

activation, which must be determined iteratively. Because aw is very near unity at 

activation for a wide range of drop sizes, most of the inaccuracies in ξact, sact, and rdry,c are 

due solely to the assumption that φact (shown in Fig. 8 as a function of rdry for solution 

drops of ammonium sulfate and sodium chloride) is equal to unity. For example, 

activation occurs at supersaturations less than 2% (i.e., hact<1.02) for solution drops of 

these substances with rdry > 10 nm, thus Fh is greater than unity by less than 1%, and FK 

and Fξ by less than 1% and 2% for ammonium sulfate, and less than 0.5% and 0.3% for 
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sodium chloride, whereas φact takes values as low as 0.71 for ammonium sulfate and 0.93 

for sodium chloride (Fig. 8). Hence in considering activation the factors Fh, FK, and Fξ 

can be taken as unity (as noted above, this might not be true for drops containing surface-

active substances, for which FK could be considerably less than unity even for low 

concentrations), and FR can be taken as equal to Fφ, with little loss in accuracy. Such a 

procedure, equivalent to considering Eq. (23) as exact, allows ξact, sact, and rdry,c and their 

fractional errors to be expressed in terms of only φ and its derivative at activation 

(Appendix A).  

In the Debye limit the fractional errors take an especially simple form that clearly 

illustrates their dependences on rdry (Appendix A). That in ξact is given by  
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(Fig. 3), where actr  ≈ 2.8 nm for ammonium sulfate solutions and 0.58 nm for sodium 

chloride solutions, and that in sact (Fig. 4) is opposite in sign and two-thirds the 

magnitude of that in ξact. Similarly, the fractional error in rdry,c for given supersaturation 

is given by  
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where s  ≈ 4.4 for sodium chloride and 0.55 for ammonium sulfate; at 1% 

supersaturation (s=0.01) this corresponds to 5% for a sodium chloride and 14% for 

ammonium sulfate. 

Inaccuracies resulting from the Köhler model decrease with increasing rdry for 

sufficiently large drops (Figs. 2, 3, 4), but they may still be appreciable, even for 
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solutions as dilute as those at activation. For instance, according to Eqs. (13) and (14), at 

typical maximum supersaturations in clouds of 0.1-0.5%, ammonium sulfate particles 

with dry radii of ~20-65 nm activate to form drops with radii ~150-750 nm, but from 

Fig. 3 it is seen that the Köhler model overestimates these activation radii by 10-20%. 

 

2.5 Extensions of the Köhler model 

Attempts have been made to extend the range of validity of the Köhler model to 

higher concentrations by modification of one or more of the terms in Eq. (8), or 

equivalently by different choices of F factors. To be useful, such modifications should 

apply to different solutes and should retain the simplicity of the basic Köhler equation, 

amenable to analytic investigation, as otherwise there would be no advantage over using 

Eq. (1) to determine ξ from h for a given rdry. Retention of ln h instead of -(1-h) in 

Eq. (7), in effect resulting in higher-order terms on the right-hand side of this equation 

from expansion of an exponential, gains little, as it leads to a more complicated equation 

and other inaccuracies typically dominate that of Fh. 

Most prior approaches have focused on the Raoult term (i.e., the factor FR). It is 

typically assumed that the reduction in water activity due to the presence of the solute is 

equal to the moles of ions per mole of water or to the mole fraction of the ions, and that 

volume additivity of water and solute holds (that is, that the volume of the solution is 

equal to the sum of the volumes of the water and solute, calculated by their masses 

divided by their respective densities). While these assumptions seem reasonable and lead 

to Eq. (8) for low concentrations, different results are obtained when such assumptions 

are used to extend the treatment to higher concentrations. 
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The assumption that the reduction in water activity is equal to the ratio of the 

number of moles of ions to moles of water (a quantity that is directly proportional to the 

molality), and the assumption that it is equal to the mole fraction of the ions, both yield 

φ = 1 to lowest-order in m, but to next order the first assumption implies φ = 1 + νmMw/2 

and the second one φ = 1 - νmMw/2. As φ decreases from unity with increasing 

concentration initially as m1/2 (Appendix A), neither of these assumptions yields the 

correct dependence of the vapor-pressure lowering on concentration or captures the rapid 

decrease in φ from unity, which is the main source of inaccuracy in results obtained from 

the Köhler model. Thus extensions of this model to more concentrated solutions based on 

either of these assumptions cannot be expected to yield accurate results. 

The assumption of volume additivity implies that the apparent molal volume of 

the solute Vφ is equal to Ms/ρdry, and thus that ρdryVφ/Ms is equal to unity, independent of 

solute concentration (and temperature). Although this assumption may result in small 

error in calculation of the density, it is typically not satisfied, especially for dilute 

solutions. For instance, as aw decreases from very nearly unity to 0.99 to 0.97 at 25ºC, Vφ 

increases from approximately 52 to 56 to 60 cm3 mol-1 for ammonium sulfate solutions 

(calculated using the fit given by Albright et al., 1994), corresponding to an increase in 

ρdryVφ/Ms of 0.70 to 0.75 to 0.80, and from approximately 16.6 to 17.6 to 18.4 cm3 mol-1 

for sodium chloride solutions (calculated using the fit given by Chen et al., 1980), 

corresponding to an increase in ρdryVφ/Ms of 0.61 to 0.65 to 0.68. Results vary for 

different substances, and Vφ may even be less than zero (as for Na2CO3, MgSO4, and 

CaCO3 at extremely low concentrations at 25ºC), although for most solutes of interest Vφ 

increases with increasing concentration. The assumption of volume additivity implies 
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Fξ = ξ3/(ξ3 - 1) and results in replacement of the expression ξ3 - ρdryVφ/Ms, which was 

taken as ξ3 in the derivation of the Köhler equation, by ξ3 - 1, leading to a quartic 

equation for ξ. Such an approximation would be more accurate for situations in which the 

quantity ρdryVφ/Ms were near unity, but overall there is little to be gained by this 

approach, and whether ξ3 or ξ3 - 1 is used is of little consequence when the dominant 

error in the Köhler model is the assumption that φ is equal to unity. 

 

3. Parameterization of radius ratio in terms of relative humidity and dry radius 

 

Obtaining a simple expression for the equilibrium radius ratio ξ = ξ(h, ξσ) that is 

accurate up to and including h = 1 for a wide range of rdry (i.e., ξσ) is complicated by two 

primary factors: the rapid increase in the practical osmotic coefficient toward unity as aw 

approaches unity (Fig. 6), and the increase in the importance of the Kelvin effect as h 

approaches unity. The values of h at which these effects occur depends strongly on the 

dry radius; for example, as rdry for ammonium sulfate solution drops increases from 20 to 

50 to 100 nm, the value of h at which the Kelvin term is 25% of the Raoult term increases 

from 0.88 to 0.97 to 0.99. For sufficiently small rdry, the range of water activity 

corresponding to h < 1 is sufficiently far from unity (Fig. 1) that φ varies smoothly, 

allowing accurate (but empirical) parameterization; however, for larger drops 

parameterization becomes difficult because of the interplay of the above factors. 

In situations for which the Kelvin effect can be neglected the expression for the 

radius ratio ξ = ξ(h, ξσ) should reduce to a function only of h. One such expression which 

is accurate for h less than ~0.9 is a power law in (1-h) with exponent in the range -0.2 to 
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-0.3 (the exact value depending on solute), a form first used by Keith and Arons [1954] 

for sea salt aerosol particles and later by Kasten [1969] for other aerosol particles. This 

empirical expression in effect assumes that FR/Fh can be accurately approximated by a 

power law in (1-h) with an exponent in the range 0.1-0.4. In some situations the Kelvin 

effect can be included as an additional perturbation term [Lewis, 2006], but for larger 

values of h and for situations in which the Kelvin effect is too large to treat as a small 

perturbation another approach must be used. 

Any parameterization for the radius ratio containing a dependence on rdry must 

implicitly include the Kelvin effect [Lewis, 2006]. One such parameterization, similar to 

that proposed by Fitzgerald [1975], is  

 ( )
dry( ) hh r= βξ α . (32) 

Although this expression does not explicitly illustrate the dependence on surface tension, 

it appears to separate the dependences of ξ on h and rdry, with the dependence of ξ on h 

for situations in which the Kelvin effect is unimportant described by α (which must have 

dimension length to the power -β), and with the Kelvin effect being parameterized by β, 

which must be very near zero except for h very near unity, when it rapidly approaches 1/2 

to match the result given by Eq. (10). However, as the value of h for which the Kelvin 

effect makes a given fractional difference in ξ, and thus at which β begins to rapidly 

approach 1/2, depends on rdry [Lewis, 2006], β must depend on rdry in addition to h. 

Additionally, α becomes infinite for h = 1 unless it includes a dependence on rdry. As 

both α and β must depend on both h and rdry, the separation of the dependencies of ξ on h 

and rdry is not realized and this formulation does not retain the simplicity of the original 
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model. Furthermore, there appears to be no indication of how the functions α and β could 

be chosen, nor any physical basis for such a choice. 

 

3.1 New formulation for radius ratio valid up to h=1 

In this section the above analysis of the Köhler model is used to obtain an 

expression for ξ as a function of h and ξσ valid up to h = 1. Such an expression provides a 

simple and direct method of calculating the radius of a solution drop with a given mass of 

known solute without recourse to iterative or recursive methods, and it clearly illustrates 

the dependences of this radius on fractional relative humidity and dry radius (as well as 

on surface tension), which is not possible with more complicated models. This expression 

would also be useful in global models where computational expense is a concern. 

For bulk solution drops of many inorganic solutes the equilibrium radius ratio is 

accurately approximated over a wide range of h by a two-parameter expression of the 

form  
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where a and b are chosen empirically to yield a good fit. For h very near unity this 

expression approaches a power law in (1-h) with exponent -1/3, similar to that given by 

Eq. (9), although a is not necessarily equal to c. Many previous expressions appear 

similar [e.g., Fitzgerald, 1978; Gerber, 1985] but contain only one free parameter, as 

they assume volume additivity which requires b = 1/a3. Although these expressions 

provide fairly good fits over a limited range of h, they were formulated for solutions that 

are undersaturated with respect to the solute and their accuracy is typically not as good 

for more concentrated solutions (i.e., lower values of h). Additionally, several 
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investigators [Hänel, 1968; Winkler, 1973; Zhang et al., 1993; Stein et al., 1994; 

Fitzgerald et al., 1998; Dick et al., 2000; Brooks et al., 2004; Kreidenweis et al., 2005] 

have proposed expressions similar to Eq. (33) but with the term b replaced by a more 

complicated function, typically a polynomial in h. However, such expressions, with 

several adjustable parameters, do not seem necessary to fit the data and their associated 

uncertainties, and they do not capture the rapid variation in φ (and thus the behavior of ξ) 

at values of h near unity. 

The accuracy of Eq. (33) is shown in Fig. 9 for bulk solution drops of ammonium 

sulfate with parameters a = 0.78 and b = 1.90, and of sodium chloride with a = 1.08 and 

b = 1.10; as noted above, these values were chosen empirically to provide a good fit over 

a wide range of h. This expression is accurate to within 3% for bulk ammonium sulfate 

solution drops over the entire range of h from the efflorescence value (~0.40) up to 0.99, 

and to within 8% for h up to 0.999, but at higher values of h it yields values of ξ that are 

too low by up to 13%. This error is due almost entirely to the rapid increase in φ from 

0.72 to 0.86 to unity as h increases from 0.99 to 0.999 to unity (although typically at 

these values of h the Kelvin effect will be important and must be taken into account). The 

expression is accurate to within 2% for bulk sodium chloride solution drops for h from 

the efflorescence value (~0.45) up to unity. In essence, this formulation assumes constant 

values for the practical osmotic coefficient, φ , equal to (a/c)3, and for the apparent molal 

volume of solute, such that ρdryVφ/Ms is equal to a3b. The above choices for a and b yield 

0.65 and 0.95 for φ , and 0.90 and 1.4 for ρdryVφ/Ms, for ammonium sulfate and sodium 

chloride, respectively. The value of φ  for ammonium sulfate is considerably less than 
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unity, but over a wide range of aw it is near the actual value of φ, resulting in a good fit 

over a wide range of h. 

The parameterization given by Eq. (33) can be extended to situations for which 

the Kelvin effect is important by an approach similar to that used above to obtain 

Eq. (19), resulting in the expression  
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which explicitly illustrates the dependences of ξ on h and rdry (contained in ξσ,0). This 

expression implicitly assumes that the Kelvin term evaluated at the radius ratio 

ξ = (a3/ξσ,0)
1/2 (which is very nearly equal to radius ratio at h = 1 given by this 

expression) applies for all situations. Thus, similar to the approximate solution to the 

Köhler equation given by Eq. (19), the radius ratio at a given value of h is that given by 

Eq. (33) for which the Kelvin effect is neglected, but with h decreased by (ξσ,0/a)3/2. 

Comparison of the radius ratio obtained from Eq. (34) and that calculated from 

Eq. (1) is shown in Fig. 9 for solution drops of ammonium sulfate and sodium chloride 

with rdry = 100, 50, 20, 10, and 5 nm. Overall, the agreement over such a wide range of 

rdry and h for a quantity which varies by so much is remarkable for an approximation 

containing only two adjustable parameters, especially considering that much of the 

inaccuracy results from the approximation for bulk solution drops. For rdry > 5 nm 

Eq. (34) yields estimates of ξ (or r) that are accurate to within ~8% for ammonium sulfate 

solution drops for h < 0.999, and to within 7% for sodium chloride solution drops for h 
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up to and including unity. For ammonium sulfate solution drops at h = 1 it yields values 

of ξ that are accurate to within a few percent for rdry near 5 nm (because for drops of this 

size φ1 is near the value chosen for φ ; Fig. 7), although with increasing rdry the 

expression becomes less accurate and yields values that are too low by 1 2φ , or nearly 

20%, for large drops due to the increase in φ as aw approaches unity. As φ1 for 

ammonium sulfate solution drops varies from ~0.62 to unity (Fig. 7), the fractional error 

in ξ1 according to Eq. (27) varies over a range of ~25% for any constant choice of φ. For 

sodium chloride solution drops at h = 1 this parameterization is accurate to within ~3% 

for rdry > 5 nm. 

The largest disagreements occur at relatively high values of h, but at such values 

uncertainty or variability in h will typically provide larger errors; for instance, for a drop 

with rdry = 50 nm at h = 0.97 an uncertainty of 0.01 in h (which would result from an 

uncertainty in temperature of ~0.15ºC for fixed water vapor pressure) yields an 

uncertainty in the radius ratio of more than 10%. Additionally, practical considerations 

often mitigate this inaccuracy in atmospheric situations because of the extremely long 

time for large drops to equilibrate at values of h near unity. For example, according to 

Lewis and Schwartz [2004, p. 22], a sea salt aerosol particle with rdry = 250 nm (for 

which the critical supersaturation is ~0.01%), initially at equilibrium at 80% RH and 

instantaneously exposed to an environment with supersaturation 0.1% at 0ºC, requires 

approximately 400 s to attain its activation radius of ~8 µm, and the time required for a 

sea salt aerosol particle with rdry = 500 nm (for which the critical supersaturation is 

~0.003%) to attain its activation radius of ~20 µm under these same conditions is roughly 

an order of magnitude greater. 
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3.2 Previous parameterizations 

The only previous parameterization for the radius ratio as a function of relative 

humidity valid up to h = 1 is an empirical one proposed by Gerber [1985] for four aerosol 

components: sea salt, "urban", "rural", and ammonium sulfate. This expression can be 

written in the form  
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1 dry

3 dry

1
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C r

h C r
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ξ , (35) 

where the first term in the parentheses (unity) follows from the assumption that the 

volumes of water and solute are additive; rdry must be given in centimeters for the values 

of Ci given by Gerber, as some of these constants contain dimensions (the values of Ci 

here differ slightly from those of Gerber). The dependence of ξ on surface tension (i.e., 

the Kelvin effect) is not explicitly shown, but is contained in the constants Ci. The 

quantity C2 is much less than unity for each of the components considered (taking values 

0.079, 0.101, 0.115, 0.082, respectively) and the quantity C4 is very nearly -1.5 (taking 

values -1.424, -1.404, -1.399, and -1.428, respectively). If C2 is taken as zero and C4 is 

taken as -1.5, and if the logarithm is expanded about h=1 and only the first term is kept 

(i.e., if the approximation Fh=1 is made), then Eq. (35) becomes  
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which has the same functional form as Eq. (34) and is equal to it if a = C1
1/3, b = 1/C1, 

and C3 = (rσ,0/a)3/2. 
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The stated range of validity for this formulation was 10 nm < rdry < 10 µm and the 

entire range of h up to unity, and the accuracy for h > 0.75 was stated as several percent, 

with a maximum error of more than 13%. However, for h = 1 this formulation 

overestimates the radius ratio of ammonium sulfate solution drops with rdry = 10 nm by 

more than 15%, and underestimates that for drops with rdry > 1000 nm by approximately 

5%. Additionally, the Kelvin effect is overestimated for a wide range of conditions, 

including drops sufficiently large that it should be negligible. For instance, for 

ammonium sulfate solution drops at h = 0.9, Eq. (35) yields radius ratios of 1.72, 1.81, 

and 1.91 for rdry = 100, 103, and 104 nm, respectively, whereas for drops of these sizes the 

Kelvin effect should reduce the bulk value of ξ = 1.75 by ~3 nm/rdry, or 0.03, 0.003, and 

0.0003, respectively, according to Eq. (2). The data used by Gerber for ammonium 

sulfate [Low, 1969] extended only up to aw = 0.996, at which φ = 0.78, thus to obtain his 

fit Gerber evidently extrapolated these data in some manner that did not account for the 

rapid increase in φ toward unity at greater aw. As the two-parameter expression given by 

Eq. (34) yields more accurate results for bulk solutions and is presented in dimensionless 

form, with the Kelvin effect explicitly characterized through the dependence of ξ on rdry, 

it is preferred to the four-parameter expression given by Eq. (35). 

 

4. Summary 

 

The Köhler model relating the radius ratio ξ of an aqueous solution drop with dry 

radius rdry to the fractional relative humidity h has been investigated, and the so-called 

Köhler equation derived in which ξ depends on h and on two dimensionless constants, c 
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and ξσ,0, with only c depending on solute and only ξσ,0 depending on particle size. Exact 

and approximate solutions to this equation are presented for h < 1. The assumptions of 

this model are formulated as approximations that are made in the derivation of the Köhler 

equation, and these approximations and the resultant inaccuracies are examined and 

quantified for several situations of interest: when the Kelvin effect can be neglected, at 

h = 1, and at activation. Specific examples are presented for solution drops of ammonium 

sulfate and sodium chloride. The dominant source of inaccuracy derives from the 

assumption that the practical osmotic coefficient φ is unity, the rapid decrease in this 

quantity from unity with increasing solute concentration limiting accuracy of the radius 

or radius ratio determined from this model to up to several tens of percent, depending on 

the substance. For large drops the errors resulting from this approximation can be 

accurately estimated using the so-called Debye approximation, which accounts for the 

initial decrease in φ from unity with increasing concentration. Attempts to extend the 

Köhler model to lower values of h and more concentrated solutions typically do not 

consider this decrease, and as it provides the dominant contribution to the inaccuracy of 

this model, these extensions cannot be expected to yield accurate results. Based on 

analogy with an approximate solution of the Köhler equation, a two-parameter expression 

for the radius ratio of an aqueous solution drop as a function of h and rdry is presented 

which yields accurate results for a wide range of rdry (at least down to 5 nm) over the 

entire range of h up to and including unity. 
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Appendix A. Approximations in the Debye limit 

 

The practical osmotic coefficient φ of an aqueous electrolytic solution depends 

strongly on the solute and its concentration, precluding simple expressions of general 

validity. However, for extremely dilute solutions a simple parameterization can be 

obtained which can be used to yield estimates of the inaccuracy of results of the basic 

Köhler model. In this so-called Debye limit φ decreases from unity with increasing 

concentration as  

 1 2
+1 A z z I−≈ − φφ  (A.1) 

[Debye and Hückel, 1923; Debye, 1924], where Aφ is a constant approximately equal to 

0.392 mol1/2 kg-1/2 at 25ºC, z+ and z- are the magnitudes of charges of the positive and 

negative ions, respectively, into which the electrolyte dissociates in solution, and I is the 

ionic strength, related to the molality m by I = m(ν+z+
2 + ν-z-

2)/2, where ν+ and ν- are the 

number of the positive and negative ions, respectively, into which a molecule of solute 

dissociates [Lewis and Randall, 1961]. In terms of the molality Eq. (A.1) can be written  
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where the factor in brackets, d, depends only on the type of electrolyte; d = 1 for 1-1 

electrolytes (for which z+=z-=1 and I=m), and d = 2√3 ≈ 3.5 for 1-2 and 2-1 electrolytes 

(for which I=3m). The range of concentrations for which this approximation holds to 

given accuracy differs for different solutes, but in general it is restricted to quite low 

concentrations, for which aw is extremely near unity. For instance, Eq. (A.2) yields 

φ = 0.81 instead of the actual 0.87 for ammonium sulfate solutions at molality 
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0.02 mol kg-1 (corresponding to aw = 0.999), and φ = 0.92 instead of the actual 0.95 for 

sodium chloride solutions at molality near 0.05 mol kg-1 (corresponding to aw = 0.998). 

For very dilute solutions the molality m, given by Eq. (6), can be approximated by  

 dry
3

s w

1 1⎛ ⎞⎛ ⎞
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ρ
ρ ξ

m
M

, (A.3) 

which differs from the exact value by the factor Fξ given by Eq. (22); for aw > 0.99 this 

factor differs from unity by less than 1% for both ammonium sulfate and sodium chloride 

solutions (as it is the quantity m1/2 that is of interest and that determines the difference of 

φ from unity, the inaccuracy resulting from this approximation over this range of aw is 

negligible). Substitution of Eq. (A.3) into Eq. (A.2) yields  
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with  
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where c ≡ [ν(Mw/Ms)(ρdry/ρw)]1/3 as above, and only the quantity in brackets depends on 

the solute. At 25ºC, K is equal to 1.6c for 1-1 electrolytes, and twice this for 1-2 and 2-1 

electrolytes; thus K is equal to 2.9 for ammonium sulfate and 1.8 for sodium chloride (for 

ammonium nitrate and sodium nitrate, both 1-1 electrolytes, K is equal to 1.5 and 1.6, 

respectively, and for ammonium bisulfate and for sodium sulfate, both 2-1 electrolytes, it 

is equal to 3.0 and 3.3, respectively). The approximation given by Eq. (A.4) can be used 

along with the value of ξ evaluated for the situation under consideration (here either h = 1 
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or activation) to determine the fractional error in the radius ratio obtained from the 

Köhler model as a function of the dry radius. 

For h = 1, substitution into Eq. (A.4) of the value ξ1 given by Eq. (10), which was 

calculated under the assumption that φ is unity, yields the approximation  
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shown in Fig. 7 along with the exact value of φ1 for ammonium sulfate and sodium 

chloride solutions as a function of rdry. Substitution of this expression into Eq. (28) yields 

Eq. (29): 
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where  
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is equal to 1.1 nm/c for 1-1 electrolytes (and hence 1.0 nm for sodium chloride solutions) 

and 4.5 nm/c for 1-2 and 2-1 electrolytes (and hence 5.0 nm for ammonium sulfate 

solutions). The approximation given by Eq. (A.7), together with the fractional error in the 

radius ratio for the Köhler model, is shown in Fig. 2. 

This analysis can be applied also to activation, although that situation is more 

complicated. Under the assumption that the only contribution to inaccuracy in the Köhler 

model derives from φ, the radius ratio at activation can be obtained from Eq. (23) as  
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with fractional error  
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Substitution into Eq. (A.4) of the value of ξact from Eq. (12), which was likewise 

calculated under the assumption that φ is equal to unity, yields  
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shown in Fig. 8, and  
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Substitution into Eq. (A.10) of these results yields  
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which can be simplified to yield Eq. (30): 
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where  
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is equal to 0.64 nm/c for 1-1 electrolytes (and hence 0.58 nm for sodium chloride 

solutions) and 2.6 nm/c for 1-2 and 2-1 electrolytes (and hence 2.8 nm for ammonium 
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sulfate solutions). The approximation given by Eq. (A.14), together with the fractional 

error in the radius ratio for the Köhler model, is shown in Fig. 3. Two-thirds of the 

fractional error in ξact derives from φact
1/2 and one-third from the term containing the 

derivative of φact. 

The supersaturation at activation sact can likewise be calculated as  
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with the fractional error in this quantity given by  

 

3 2

act1 2act
act

act

act

1 ln
1

3 ln
1

1 ln
1

2 ln

d

ds

s
d

d

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥∆ ⎝ ⎠⎣ ⎦≈ −

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

φ
ξ

φ
φ
ξ

, (A.17) 

which in the Debye limit can be approximated using the same techniques as above by  
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opposite in sign and two-thirds the magnitude of the fractional error in the radius ratio at 

activation. Both the fractional error in supersaturation resulting from the Köhler model 

and the approximate value given by Eq. (A.18) are shown in Fig. 4. 

Similarly, the critical value of rdry for given supersaturation can be obtained from 

Eq. (A.16) as  
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with fractional error given by  
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In the Debye limit this fractional error can be approximated as  
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or in terms of the supersaturation s as Eq. (31): 
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where s  ≡ 18(c/K)3 is approximately equal to 0.55 for ammonium sulfate and 4.4 for 

sodium chloride. 
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Title Captions 

Fig. 1. Contours of constant fractional relative humidity h as a function of water activity 

aw and dry radius rdry (left panel) and contours of constant aw as a function of h and rdry 

(right panel), calculated from Eq. (1) for solution drops of ammonium sulfate and sodium 

chloride. Contours of aw = 0.99 end at values of h corresponding to activation. 

 

Fig. 2. Radius at h = 1, r1, as a function of dry radius rdry for solution drops of ammonium 

sulfate and sodium chloride, and values according to the Köhler model given by Eq. (11). 

Lower panel shows fractional error in r1 (or in ξ1) calculated from the Köhler model 

given by Eq. (27), and in the Debye limit given by Eq. (29). 

 

Fig. 3. Radius at activation ract as a function of dry radius rdry for solution drops of 

ammonium sulfate and sodium chloride, and values according to the Köhler model given 

by Eq. (13a). Lower panel shows fractional error in ract (or in ξact) calculated from the 

Köhler model and that in the Debye limit given by Eq. (30). 

 

Fig. 4. Supersaturation at activation sact as a function of dry radius rdry for solution drops 

of ammonium sulfate and sodium chloride, and values according to the Köhler model 

given by Eq. (14a). Lower panel shows fractional error in sact calculated from the Köhler 

model and in the Debye limit given by Eq. (A.18). 

 

Fig. 5. Solution z (scaled radius ratio) to Eq. (16) for h < 1 as a function of scaled Kelvin 

factor ε. Also shown are the limiting solution and lowest-order correction for small ε, the 
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limiting solution for large ε, and approximate solution (1+ε3/2)-1/3. Lower panel shows 

fractional error in the limiting and approximate solutions. 

 

Fig. 6. Factors Fh, FK, FR, Fξ, and Fφ quantifying the approximations made in deriving 

Eq. (8) as a function of fractional relative humidity h (for Fh) or water activity aw (for 

other factors) for solution drops of ammonium sulfate (left) and sodium chloride (right). 

Each factor is equal to unity for abscissa equal to unity. 

 

Fig. 7. Practical osmotic coefficient at h = 1, φ1, as a function of dry radius rdry for 

solution drops of ammonium sulfate and sodium chloride, and approximation given by 

Debye limit, Eq. (A.10). 

 

Fig. 8. Practical osmotic coefficient at activation φact as a function of dry radius rdry for 

solution drops of ammonium sulfate and sodium chloride, and approximation given by 

Debye limit, Eq. (A.11). 

 

Fig. 9. Fractional error in radius ratio ∆ξ/ξ, calculated from Eq. (34), as a function of 

fractional relative humidity h for bulk solution drops and for solution drops with 

rdry/nm = 100, 50, 20, 10, and 5 of ammonium sulfate (top panel) and sodium chloride 

(bottom panel). 
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Fig. 1. Contours of constant fractional relative humidity h as a function of water activity 

aw and dry radius rdry (left panel) and contours of constant aw as a function of h and rdry 

(right panel), calculated from Eq. (1) for solution drops of ammonium sulfate and sodium 

chloride. Contours of aw = 0.99 end at values of h corresponding to activation. 
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Fig. 2 
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Fig. 2. Radius at h = 1, r1, as a function of dry radius rdry for solution drops of ammonium 

sulfate and sodium chloride, and values according to the Köhler model given by Eq. (11). 

Lower panel shows fractional error in r1 (or in ξ1) calculated from the Köhler model 

given by Eq. (27), and in the Debye limit given by Eq. (29). 
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Fig. 3 
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Fig. 3. Radius at activation ract as a function of dry radius rdry for solution drops of 

ammonium sulfate and sodium chloride, and values according to the Köhler model given 

by Eq. (13a). Lower panel shows fractional error in ract (or in ξact) calculated from the 

Köhler model and that in the Debye limit given by Eq. (30). 
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Fig. 4 
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Fig. 4. Supersaturation at activation sact as a function of dry radius rdry for solution drops 

of ammonium sulfate and sodium chloride, and values according to the Köhler model 

given by Eq. (14a). Lower panel shows fractional error in sact calculated from the Köhler 

model and in the Debye limit given by Eq. (A.18). 
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Fig. 5 
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Fig. 5. Solution z (scaled radius ratio) to Eq. (16) for h < 1 as a function of scaled Kelvin 

factor ε. Also shown are the limiting solution and lowest-order correction for small ε, the 

limiting solution for large ε, and approximate solution (1+ε3/2)-1/3. Lower panel shows 

fractional error in the limiting and approximate solutions. 
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Fig. 6 
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Fig. 6. Factors Fh, FK, FR, Fξ, and Fφ quantifying the approximations made in deriving 

Eq. (8) as a function of fractional relative humidity h (for Fh) or water activity aw (for 

other factors) for solution drops of ammonium sulfate (left) and sodium chloride (right). 

Each factor is equal to unity for abscissa equal to unity. 
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Fig. 7 
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Fig. 7. Practical osmotic coefficient at h = 1, φ1, as a function of dry radius rdry for 

solution drops of ammonium sulfate and sodium chloride, and approximation given by 

Debye limit, Eq. (A.10). 
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Fig. 8 
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Fig. 8. Practical osmotic coefficient at activation φact as a function of dry radius rdry for 

solution drops of ammonium sulfate and sodium chloride, and approximation given by 

Debye limit, Eq. (A.11). 
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Fig. 9 
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Fig. 9. Fractional error in radius ratio ∆ξ/ξ, calculated from Eq. (34), as a function of 

fractional relative humidity h for bulk solution drops and for solution drops with 

rdry/nm = 100, 50, 20, 10, and 5 of ammonium sulfate (top panel) and sodium chloride 

(bottom panel). 

 




